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Abstract
The frustrated lattice gas model is studied in the quenched version where the
interactions are quenched random variables, and in the annealed version where
the interactions are allowed to evolve in time with a suitable kinetic constraint.
The dynamical nonlinear susceptibility, recently introduced by Donati et al,
is evaluated. In the annealed version we observe a behaviour very similar
to the results for the p-spin models in mean field, and those for a Lennard-
Jones mixture as found by Donati et al. In the quenched version we observe
a substantially different behaviour of the dynamical susceptibility. The results
suggest that the behaviour of the dynamical susceptibility in the annealed model
can be interpreted as the imprint of the thermodynamic transition present in
the quenched model and signalled by the divergence of the static nonlinear
susceptibility. A similar mechanism might also be present in glassy systems.

1. Introduction

The frustrated lattice gas model has been recently introduced in the context of the glass
transition [1].

In the quenched case the model is a spin glass diluted with lattice gas variables; being
made up of diffusing particles, it is suitable for studying quantities such as the diffusion
coefficient or the density autocorrelation functions that are usually important in the study of
liquids. This model exhibits in mean field [2] properties closely related to those of p-spin
models. In three dimensions (3D), at low enough temperatures, numerical simulations [3]
show a behaviour of the diffusion coefficient very similar to that experimentally observed
in fragile liquids [4]. Moreover the model presents a continuous static transition where the
fluctuations of the order parameter, which coincide with the nonlinear susceptibility, diverge.
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This property is also observed in spin glasses, but it is absent in glassy systems, where there
is no sharp thermodynamic transition characterized by the divergence of a thermodynamical
quantity analogous to the nonlinear susceptibility.

We have also studied the model in the annealed version [5], where the interactions are
allowed to evolve with a kinetic constraint. We find that the dynamical behaviour fits quite
well the predictions of the mode coupling theory for supercooled liquids [6]. It is also easy to
show that the model does not exhibit any thermodynamic transition; consequently there is no
divergence in the nonlinear susceptibility.

Recently Donati et al [7] have introduced a dynamical nonlinear susceptibility both for
spin models and for structural glasses. They have shown that in the mean field p-spin spherical
models [8] (where the mode coupling equations are exact) there is a characteristic time where
the dynamical susceptibility has a maximum, and that this maximum diverges as the dynamical
temperature TD is approached from above.

The Hamiltonian of the p-spin model is

H =
∑

i1<···<ip
Ji1···ipSi1 · · · Sip (1)

where p � 3, the couplings Ji1···ip are Gaussian with zero mean and variance 1/Np−1, and the

spins are real variables, with the global constraint
∑N

i=1 S
2
i ≡ N , where N is the number of

spins. The dynamical nonlinear susceptibility χ(t) is defined by

χ(t) = βN(〈q(t)2〉 − 〈q(t)〉2) (2)

where q(t) = 1
N

∑
i Si(t

′)Si(t ′ + t) is the overlap between the states at times t ′ and t ′ + t .
Solving the equation of motion for χ(t) at a temperature higher than TD, Donati et al find
that χ(t) displays a maximum as a function of time, χ(t∗), which is shifted to larger times
t∗ as T approaches TD from above and increases as a power law χ(t∗) ∝ (T − TD)

−α . A
similar behaviour has also been found in molecular dynamics simulation performed for a
Lennard-Jones mixture.

We have evaluated χ(t) in the frustrated lattice gas model, in both the quenched and the
annealed version. Whereas in the quenched caseχ(t) shows a behaviour substantially different
from that obtained in glass forming systems, in the annealed case it exhibits a maximum with
a behaviour similar to that found in the mean field p-spin models and in molecular dynamics
simulations of a Lennard-Jones mixture.

2. The frustrated lattice gas model

2.1. The quenched model

Recently a lattice model, which has mean field properties closely related to those of p-spin
models, has been introduced [1] in connection with the glass transition. This model is a diluted
spin glass which, since it comprises diffusing particles, is well suited for the study of quantities
that are usually important in the study of liquids, such as the diffusion coefficient or the density
autocorrelation functions. The Hamiltonian of the model is

−βH = J
∑

〈ij〉
(εij SiSj − 1)ninj + µ

∑

i

ni (3)

where Si = ±1 are Ising spins, ni = 0, 1 are occupation variables and εij = ±1 are quenched
disordered interactions.

This model reproduces the Ising spin glass in the limitµ → ∞ (all sites occupied, ni ≡ 1).
In the other limit, J → ∞, the model describes a frustrated lattice gas with properties recalling
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those of a ‘frustrated’ liquid. In fact, the first term of the Hamiltonian (3) implies that two
nearest-neighbour sites can be freely occupied only if their spin variables satisfy the interaction,
that is if εijSiSj = 1, otherwise they feel a strong repulsion.

To make the connection with a liquid, we note that the internal degree of freedom Si may
represent, for example, internal orientation of a particle with non-symmetric shape. Two par-
ticles can be nearest neighbours only if their relative orientation is appropriate, otherwise they
have to move apart. Since, in a frustrated loop, the spins cannot satisfy all interactions, in this
model particle configurations in which a frustrated loop is fully occupied are not allowed. The
frustrated loops in the model are the same as in the spin glass model and correspond in the liquid
to those loops which, due to geometrical hindrance, cannot be fully occupied by the particles.

In the case J = ∞ the model has a maximum density ρmax  0.68. It has been shown
that there exists some density ρc  0.62 where the system has a transition of the type of 3D
p-spin models [9], with a divergence of the static nonlinear susceptibility

χSG = 1

N

∑

ij

[〈SiniSjnj 〉2] (4)

where the average 〈· · ·〉 is over the Boltzmann measure, while the average [· · ·] is over the
disorder configurations {εij }.

Here we show the results for the relaxation of the self-overlap, which is defined as

q(t) = 1

N

∑

i

Si(t
′)ni(t ′)Si(t ′ + t)ni(t

′ + t) (5)

and for the dynamical susceptibility

χ(t) = N [〈q(t)2〉 − 〈q(t)〉2] (6)

where the average 〈· · ·〉 is done on the reference time t ′. In figure 1 we show the relaxation
functions 〈q(t)〉 for a system of size 163 for densities between ρ = 0.58 and 0.62. Each
curve is obtained by averaging over a time interval for t ′ of 6 × 106–8 × 107 Monte Carlo
steps, and finally averaging the results over 16 realizations of the disorder. Note that there is
no sign of a two-step relaxation. In figure 2 we show the dynamical susceptibility χ(t) for
the same size and values of the density as in figure 1. Note that χ(t) grows monotonically
and has no maximum at finite time. The asymptotic value χ(∞) corresponds to the static
susceptibility (4), and therefore has a divergence at the density ρc  0.62.

2.2. The annealed model

We have studied the frustrated lattice gas model (3) in the case where the interactions εij = ±1
are annealed. When we evaluate the partition function of the model, we must consider in this
case not only the Si and ni but also the εij as dynamical variables. Thus, summing over the εij
and Si we obtain, apart from an irrelevant factor, Z = ∑

{ni ,Si ,εij } e−βH = ∑
{ni } e−βHeff , where

−βHeff = −K
∑

〈ij〉
ninj + µ

∑

i

ni (7)

and K = − ln(1 + e−2J /2). Therefore the static properties of the model are equal to those
of a lattice gas with a repulsion between nearest-neighbour particles, and with no correlation
between spins, 〈SiSj 〉 = δij . With the change of variables ni = 1

2 (1 + σi), where σi = ±1 are
Ising spins, this Hamiltonian can be written as the Hamiltonian of an antiferromagnetic Ising
model with an effective temperature Teff = 4 K−1, which is always greater than the critical
temperature of the 3D antiferromagnetic Ising model Tc  4.5. Therefore we can conclude
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Figure 1. Relaxation functions of the self-overlap in the quenched model, for a system of size 163

and densities ρ = 0.58, 0.59, 0.60, 0.61, 0.62 (density increasing from bottom to top).

Figure 2. Dynamical susceptibility in the quenched model, for a system of size 163 and densities
ρ = 0.58, 0.59, 0.60, 0.61, 0.62 (density increasing from bottom to top).

that the model (7), and also then the model (3) with annealed interactions, does not exhibit
any thermodynamic transition. In the following we always consider the model with J = ∞.

We assume a dynamics for the variables εij with a kinetic constraint, namely εij can change
its state only if the sites i and j , and all their nearest neighbours, are empty; in this way the
states accessible to a given particle can change only if a wide enough region of the system
around it rearranges itself. We expect that, as the temperature decreases, the disorder due to
the local environment changes so slowly that the interactions behave more and more as if they
were frozen, playing the role of ‘self-induced quenched’ variables.
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Figure 3. Relaxation functions of the self-overlap in the annealed model, for a system of size 163

and densities ρ = 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61 (density increasing from
bottom to top).

In order to generate an equilibrium configuration at a given density we simulate the model
without any kinetic constraint. In this case we can equilibrate the system even at high density.
Once an equilibrium configuration is obtained, we consider a diffusive dynamics for the
particles where the interactions evolve with the kinetic constraint, as described before. In
conclusion the simulations are performed in the following way:

(1) one starts from an equilibrium configuration obtained at some density ρ;
(2) at each step of dynamics an interaction εij is randomly chosen and is changed if the sites

i and j , and all their nearest neighbours, are empty;
(3) a particle (occupied site) on the lattice, one of the coordinate directions, and a final state

of the spin Si are randomly chosen;
(4) one tries to move the particle to the nearest-neighbour site in the chosen direction. The

particle can move if two conditions are both satisfied. First, the destination site must be
empty. Second, the spins of the particles that are nearest neighbours of the destination
site must satisfy the interaction with the spin of the chosen particle. If the particle cannot
move to the chosen site the move is rejected;

(5) the clock advances one unit of time.

During the dynamics we have evaluated the relaxation functions and the dynamic nonlinear
susceptibility. Note that, as the density grows, the relaxation time gets longer and longer, and
eventually exceeds our observation time (which is between 107 and 108 for a system of size
163) at a density of approximately ρ  0.63.

In figure 3 we show the relaxation functions of the self-overlap (5), for a system of size 163,
for various densities between ρ = 0.52 and 0.61. Each curve is obtained by averaging over
a time interval for t ′ of 3 × 106 to 108 Monte Carlo steps. Observe that, for high density, the
relaxation functions clearly develop a two-step relaxation, signalling the existence of two well
separated time scales in the system. We interpret the initial short time decay of the relaxation
functions as due to the motion of the particles in the frozen environment, which on this time
scale appears as quenched, while the second decay is due to the evolution of the environment,
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Figure 4. Fit of the intermediate time part of the relaxation function of the self-overlap, for density
ρ = 0.61, with the fitting function f + At−a − Btb , where the fitting parameters are f , A, B and
λ, and a and b are given by the relation (9).

Figure 5. Dynamical susceptibility in the annealed model, for a system of size 163 and densities
ρ = 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61 (density increasing from left to right).

and the final relaxation to equilibrium of the system. We tried to fit the intermediate time part,
corresponding to the plateau, of the relaxation function of the overlap for density ρ = 0.61,
with the function predicted by the mode coupling theory [6] (in a simplified form):

〈q(t)〉 = f + At−a − Btb (8)

where a and b are given by the relation

#2(1 − a)

#(1 − 2a)
= #2(1 + b)

#(1 + 2b)
= λ (9)
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and f , A, B and λ are the fitting parameters. The result is shown in figure 4, where the full
curve is the fitting curve with a = 0.339 ± 0.002 and b = 0.69 ± 0.01.

In figure 5 we show the dynamical nonlinear susceptibility (6) for the same system size
and values of the density as in figure 3. It has the same behaviour as the p-spin model in
mean field and as the molecular dynamics simulations of the Lennard-Jones binary mixture,
namely a maximum χ(t∗) that seems to diverge, together with the time of the maximum t∗, as
the density increases. For the highest density, the maximum of χ(t) decreases, possibly due
to finite size effects, too short an observation time, or a change in the dynamics above some
critical density. This fact is observed also in molecular dynamics simulations of Lennard-Jones
liquids [10]. We find that the maximum χ(t∗) as a function of the density can be fitted quite
well (taking out the last three points, where presumably a rounding of the divergence takes
place) by the power law χ(t∗) ∝ (ρc − ρ)−α , with ρc = 0.66 ± 0.01 and α = 3.6 ± 0.2. At
very long times χ(t) decays to the equilibrium value, which is simply χ(∞) = ρ2.

3. Conclusions

The frustrated lattice gas model in the quenched version has a thermodynamic transition at
a critical density, where the static nonlinear susceptibility diverges. The annealed model,
which does not exhibit any thermodynamic transition, consequently does not show any critical
behaviour of the static susceptibility; on the other hand, we observe a critical behaviour of the
dynamical susceptibility similar to that observed in glass forming systems.

We conclude that the thermodynamic transition, present in the quenched model and
signalled by the divergence of the static susceptibility, manifests itself in the annealed model
in the critical behaviour of the dynamical susceptibility. This behaviour seems a consequence
of the fact that, for sufficiently short times, the interactions can be considered as quenched
variables. Since the annealed model shows a behaviour reminiscent of supercooled glass
forming liquids [5], the results suggest that also in glass forming liquids the behaviour of the
time-dependent nonlinear susceptibility may be due to the presence of slow degrees of freedom
which act as quenched variables on short time scales. Although the annealed lattice gas model
does not show any thermodynamic transition, we cannot exclude that this is due to the absence
of significant interactions: typically, in a real system the dynamical constraint corresponds to
some kind of interaction; in our case the statics of the model is instead described by a trivial
Hamiltonian, while the complex dynamics is due to the kinetic constraint.
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